Highly deformable liquid-state heterojunction sensors.

نویسندگان

  • Hiroki Ota
  • Kevin Chen
  • Yongjing Lin
  • Daisuke Kiriya
  • Hiroshi Shiraki
  • Zhibin Yu
  • Tae-Jun Ha
  • Ali Javey
چکیده

Mechanically deformable devices and sensors enable conformal coverage of electronic systems on curved and soft surfaces. Sensors utilizing liquids confined in soft templates as the sensing component present the ideal platform for such applications, as liquids are inherently more deformable than solids. However, to date, liquid-based devices have been limited to metal lines based on a single-liquid component given the difficulty in the fabrication of liquid-based junctions due to intermixing. Here, we demonstrate a robust platform for the fabrication of liquid-liquid 'heterojunction' devices, presenting an important advancement towards the realization of liquid-state electronic systems. The device architecture and fabrication scheme we present are generic for different sensing liquids, enabling demonstration of sensors responsive to different stimuli. As a proof of concept, we demonstrate temperature, humidity and oxygen sensors by using different ionic liquids, exhibiting high sensitivity with excellent mechanical deformability arising from the inherent property of the liquid phase.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A highly shape-adaptive, stretchable design based on conductive liquid for energy harvesting and self-powered biomechanical monitoring

The rapid growth of deformable and stretchable electronics calls for a deformable and stretchable power source. We report a scalable approach for energy harvesters and self-powered sensors that can be highly deformable and stretchable. With conductive liquid contained in a polymer cover, a shape-adaptive triboelectric nanogenerator (saTENG) unit can effectively harvest energy in various working...

متن کامل

Performance Study and Analysis of Heterojunction Gate All Around Nanowire Tunneling Field Effect Transistor

In this paper, we have presented a heterojunction gate all around nanowiretunneling field effect transistor (GAA NW TFET) and have explained its characteristicsin details. The proposed device has been structured using Germanium for source regionand Silicon for channel and drain regions. Kane's band-to-band tunneling model hasbeen used to account for the amount of band-to...

متن کامل

Liquid Crystalline Polymers for Efficient Bilayer-Bulk-Heterojunction Solar Cells

The unique temperature-dependent solubility of liquid crystalline poly(2,5-bis(3-alkylthiophen-2-yl)thieno[3,2b]thiophene) (PBTTT) enabled us to construct the first bilayer-bulk-heterojunction devices based on a PBTTT: PCBM (1:2)/MDMO-PPV:[70]PCBM (1:4) active layer. The bilayer device exhibited an extended optical absorption over the solar spectrum and concentration gradient that enhanced char...

متن کامل

Space-Time Adaptive Simulation of Highly Deformable Substances

This report presents an approach for e ciently yet precisely simulating highly deformable substances ranging from solids to liquids. The key idea is to use a state equation for specifying the dynamics of the substance. During a simulation, the material is sampled by particles that derive their interaction forces from this state equation. Since this ensures the same qualitative behavior whatever...

متن کامل

Charge-integrating organic heterojunction phototransistors for wide-dynamic-range image sensors

Solution-processed phototransistors can substantially advance the performance of image sensors. Phototransistors exhibit large photoconductive gain and a sublinear responsivity to irradiance, which enables a logarithmic sensing of irradiance that is akin to the human eye and has a wider dynamic range than photodiode-based image sensors. Here, we present a novel solution-processed phototransisto...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Nature communications

دوره 5  شماره 

صفحات  -

تاریخ انتشار 2014